If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-100x+510=0
a = 4.9; b = -100; c = +510;
Δ = b2-4ac
Δ = -1002-4·4.9·510
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-2}{2*4.9}=\frac{98}{9.8} =10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+2}{2*4.9}=\frac{102}{9.8} =10+4/9.8 $
| -29=4+(-3n+3) | | 32+2r=1 | | w(w+8)-0.5=19.5 | | 80+3k=5k+8 | | p=70*3/2 | | 5x+40=4x+25 | | 2/26=4x | | 3(5-2x)=2(4-3x) | | x^+7x=4 | | (5p-5)(7p+6)=35p-5p- | | 18+9x-x=-2(9-4x) | | x/2x+x=18 | | 4-12x+2x=2(2-5x) | | 4x-7=3-4x | | ((3/4)x)=165 | | 7-6=3(2-2x) | | x/2+x=18 | | |5x+1|=|11-2x| | | 3x+2x+4-3=0 | | ((1/4)x+12)+((1/2)x+3)=180 | | 3u-78=2u | | 3x+14=168 | | x^+10x=9=0 | | 5+13y=63 | | 34=9x+2 | | 6x-1=2x^ | | 3x+35=2x+15 | | (3x-10)=(2x+3) | | 3+6y=1 | | 74=740/x | | (3x-10)=(1/4(8x+12)) | | 9.95+x=10.65;$0.70 |